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Use of Weighting Functions in 
DFT/FFT Analysis (Part II) 
by Svend Gade and 
Henrik Herlufsen 

Abstract 
Part II of the article "Use of Weighting Functions in DFT/FFT analysis" 
contains the following Appendices referred to in Part I of the article 
A: Analogy between filter analysis and DFT/FFT analysis, 
B: Windows and figures of merit, 
C: Effective Weighting of overlapped spectral averaging 
D: Experimental Determination of the BT product for FFT-analysis 

using different weighting functions and overlap, 
E: Examples of User Defined Windows, 
F: Picket Fence Effect 

Sommaire 
La deuxième partie de cet article, "Application des fonctions de pondé- 

ration en analyse DFT/FFT", contient les appendices auxquels fait réfé- 
rence la première partie. 
A: Analogie entre l'analyse par filtres et l'analyse DFT/FFT. 
B: Caractéristiques des fenêtres. 
C: Pondération  effective  des  moyennes  de  spectres  avec 

recouvrement. 
D: Determination expérimentale du produit BT en analyse FFT, avec 

différentes fonctions de pondération et recouvrements. 
E: Exemples de fenêtres définies par l'utilisateur. 
F: Effet de barrière. 

Zusammenfassung 
Der zweite Teil des Artikels ,,Anwendung von Bewertungsfunktionen in 

der DFT/FFT-Analyse" enthält folgende Anhänge, auf die im ersten Teil 
Bezug genommen wird: 
A: Analogie zwischen Filter-Analyse und DFT/FFT-Analyse 
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B: Fenster und mathematische Beschreibung 
C: Effektive Bewertung bei spekraler Mittelung mit Überlappen 
D: Experimentelle Bestimmung des BT-Produkts bei der FFT-Analy- 

se mit verschiedenen Bewertungsfunktionen und Überlappungen 
E: Beispiele für anwenderdefinierte Fenster 
F: Lattenzauneffekt 

Appendix A 

Analogy between filter analysis and 
FFT/DFT analysis 
In the time domain a linear filter is described by its impulse response 
function h(t), which is the response due to an infinitely short and infi- 
nitely high unit impulse (so-called Dirac Delta function δ (t), see Ref. [1]). 
   By considering any input signal x (t) to the filter as a sum of weighted 
and time shifted delta functions i.e. 

(A.3) 

The output of a filter at a given point in time to is thus determined by the 
input time history up to time to weighted by the impulse response function 
inverted with respect to time and shifted to to i.e. h(to - t). This is illus- 
trated in Fig. A.1 for a simple lowpass filter with an exponential decaying 
impulse response function. The output at time to, y (to) is the integral (or 
the area) of the curve in Fig. A.1 d). Mathematically the calculation in eqn. 

(A.1) 

we find, under assumptions of linearity, that the output of the filter is 

(A.2) 

or since h (t) = 0 for t < 0, that 
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Fig. A.1. a) impulse response of a simple lowpass filter h(t), 
b) input signal to be analysed x(t), 
c) impulse response inverted and shifted h(to -t), 
d) weighted input signal to be integrated to give output at time to, y(to) 

(A.3) is called convolution of x (t) with h (t) (denoted by x (t) * h(t)). 
Let us now have a look at the FFT/DFT calculation. To simplify the 
notation the integral formulation will be used instead of the discrete. The 
consequence of the discrete form and finite calculation time will be dis- 
cussed later. Each Fourier spectrum is a transform of the input signal x (t) 
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applied with a proper weighting function w (t). The transform is based on 
a time record of length T. 

(A.4) 

Y(f) is the output of the transform at frequency f and at time T (neglect- 
ing for the time being the delay due to the calculation time Tcal). Consider- 
ing this output at a certain frequency f0 as a function of time Y(f0,t) 
or just Y(t), we have 

(A.5) 

Rewriting this using 

Wh (t) = w (-t+T)                                                                                         (A.6) 

we get 

or 

 

(A.7) 

This is exactly the same equation as for a filter (eqn. A.3) and we can 
define an equivalent (complex) impulse response function hFT(t) for the 
Fourier Transform (FT) at frequency f0 by 

hFT(t) = wh(t) ej2πfo(t-T)         for         0 ≤  t < T                                             (A.8) 

hFT (t) = 0                           elsewhere 

and (A.7) becomes 

(A.9) 
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Fig. A.2. a) Hanning Weighting function w(t), 
b) wh(t) = w(-t + T) for the Hanning Weighting, 
c) complex impulse response function for filter/line at f0 = 4 ∆f with Hanning Weighting 

This proves the analogy between the Finite Fourier Transform eqn. 
(A.9) and the filtering analysis eqn. (A.3). The impulse response hFT (0 is 
complex and of finite length T and is determined by the weighting func- 
tion w(t) (equations (A.8) and (A.6)). Fig. A.2 shows an example of a 
weighting function and one of the corresponding complex impulse re- 
sponse functions. 

Notice that for the commonly used weighting functions like Hanning, 
Rectangular, Kaiser-Bessel and Flat Top, w (t) = wh (t) since they are 
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symmetrical around t = T/2 (see also Appendix B eqn. (B.1) and table B.1). 
   So far we have used an integral formulation of the Fourier Transform. 
In practical calculations we will of course work with 
a)    sampled versions of the time signals and their spectra 
b)    finite calculation time Tcal of the transform 

The transform which is discrete in both time and frequency domain is 
called the Discrete Fourier Transform (DFT). The Fast Fourier Trans- 
form (FFT) is a fast calculation of the DFT based on a certain algorithm. 
re a):  The time signals are sampled at time intervals ∆t = 1/fs, where fs is 

the sampling frequency, and the transform will be of N samples 
which means that T = N · ∆t. The spectrum is computed at dis- 
crete frequencies f0 = k ∆f = k 1/T, where k is an integer and 
0 ≤ k < N/2. The transform is thus in its proper form written as: 

 

(A.10) 

x (n) is the n'th time sample in the record, w (n) is the n'th time 
sample of the weighting function and Y(k) is the spectral value at 
frequency k ∆ f. The factor 1/N is just a scaling factor irrelevant for 
the discussion here. 

re b): Since we have a finite calculation time Tcal which in most situations 
is much larger than the sample interval ∆ t we will not get a continu- 
ous output as with an analog filter or a sample per sample output 
every ∆ t as with a real time digital filter. 

Every FFT represents a sample of the Fourier Transform filters (eqn. 
(A.8) and (A.9)), but the relatively long Tcal makes the analysis appear 
blockwise rather than continuous. In many applications, analysis of tran- 
sients for instance, it is preferable to look at it as a transform of a data 
block with various trigger possibilities. This approach will be dealt with 
later. 

In a situation where Tcal ≤ ∆t (analysis of very low frequencies or analy- 
sis with very high zoom factors or much faster calculations than available 
today) the FFT will be indistinguishable from a bank of real-time digital 
FIR (finite impulse response) filters with (complex) impulse response 
functions as given in eqn. (A.8). The FFT is here assumed to work continu- 
ously i.e. with free run triggering, as a digital filter. 

Since the filtering or FFT is only part of the analysis we will now look at 
the detector/averager. 
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The purpose of the detector in a filter analyzer is to measure the power 
(mean square) of the output signal of the filter y (t), by time averaging of 
the squared signal y2(t). The averaging can be linear 

(A.11) 

which is a continuous running average. The bar   indicates average val- 
ues. For a complete discussion of this subject see Ref. [1]. 

The averaging in the FFT analyzer is the corresponding summation of 
the squared amplitudes | Y(i) |2 of the output samples Y(i), where i is the 
time or number index. Assuming a transform every Tcal we will have the 
i'th sample at time t = ti = i Tcal. 

This gives for linear averaging 

or exponential 

(A.12) 

(see Footnote page 35)   (A. 13) 

and for exponential averaging 

 Y(i) 2 = 1 ( Y(i) 2 + (N/2 – 1)  Y(i – 1) 2)                                             (A.14) 

which is a discrete and recursive form of the analog version eqn. (A.12). 
Notice that Tcal thus includes calculation of FFT as well as the 

averaging. 
It could now be argued that in order to get a real-time analysis in the 

sense that all input time samples are equally weighted in the averaging 
process we need to fulfil the requirement. 

Tcal  <  ∆t                                    =                                                              (A.15) 

as for real-time recursive digital filtering. 
The weighting of the input samples in each power (mean square) calcu- 

lation | Y(i) |2 is given by  hFT(t) 2 = w2
h (t), and wh(t) = w (t) for the 

weighting functions considered here as mentioned earlier. 
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In linear averaging this will result in an effective weighting function 
weff (t) on the time data given by 

(A.16) 

It turns out that if Hanning Weighting is used w2
eff (t) is uniform (flat) if 

Tcal = T/3,  T/4, T/5, ...., i.e. if 66 2/3 % overlap, 75% overlap, .... can be per- 
formed. This is shown and discussed in Appendix C. "True" real-time 
analysis can thus be performed with Hanning Weighting if 

Tcal  <  T/3,              =                                                                                    (A.17) 

is fulfilled. 
If Rectangular weighting is used no overlap would be required. This is 

however as discussed in the article, in general a poor choice of weighting 
function for continuous signals. 

As an example, the B & K Analyzer Type 2032 has a Tcal ≈ 50 ms in 
single channel mode with Hanning weighting. This gives the possibility of 
"true" real-time analysis (with either 66 2/3 % or 75% overlap) with a 
3,2 kHz frequency span setting (i.e. ∆f = 4 Hz, T = 250 ms). 

After having discussed the analogy between filter and FFT analysis in 
the time domain and its limitations with respect to real-time operation we 
will now consider the analogy in the frequency domain. 

The relation between input and output in the frequency domain for a 
filter is 

Y(f) = H(f) · X(f)                                                                                                        (A.18) 

where X(f) and Y(f) are the spectra of the input and output signals re- 
spectively and H(f) is the frequency response of the filter. This is a conse- 
quence of eqn. (A.3) and the convolution theorem for the Fourier Trans- 
form (Refs. [1,7,8]). H (f) is the Fourier Transform of h (t) 

H (f) = F {h(t)}                                                                                           (A.19) 

and is called the (complex) filter characteristic, containing both amplitude 
and phase information. 

From eqn. (A.8) we thus find that the filter characteristic for the FFT at 
frequency f0 is given by 
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HFT(f) = F {w(t)e j2 πfo(t – T)}                                                                        (A.20) 

since wh (t) = w (t) for the weighting functions considered here. 
Defining 

F {w (t)} = W (f)                                                                                        (A.21) 

we have that 

HFT (f) = F {w (t) e j2πfo(t – T)} = W (f-fo)                                                     (A.22) 

The filter characteristic for the filter/line at frequency f0 is thus the Fou- 
rier Transform of the weighting function shifted to the relevant frequency 
f0. The FFT can thus be considered as a bank of parallel, identical con- 
stant bandwidth filters with the amplitude characteristic | W (f - f0)   i.e. 
 W (f)  I centered at the frequency f0. This is the basis for the plots of the 
filter amplitude characteristics for the different weighting functions 
(Fig. 6, 8, 11 and 15) in Part I of this article. 

For analog filters the characteristics are always complex conjugate sym- 
metric about f = 0 i.e. H(-f) = H*(f). This is not true for W(f - f0), 
where f0 ≠  0, and the FFT output Y(i), for f0 ≠ 0, is in general complex. 

The phase characteristic of the FFT filters is given by the phase of 
W(f), ∠  W(f). For the weighting functions considered here which are 
symmetric about t = T/2 the phase is given by the time shift of T/2 as 

∠  W(f) = -2 π f T/2 = - π f T = -π f / ∆ f                                                     (A.23) 
or 

∠  W (f - fo) = -π ( f - fo) / ∆f                                                                       (A.24) 

The phase characteristic is linear with a shift of -π for every ∆f (filter/ 
line spacing) see Fig. A.5 b). (A linear phase characteristic is often a main 
advantage in application of FIR filters). 

As already mentioned another approach for the formulation of the FFT 
is very often used. This approach is based on the blockwise analysis and 
that the FFT line spectrum is considered as the Fourier Series of a periodic 
signal with the data block (record) being one period. The derivation of the 
FFT from the Integral Fourier Transform is given by the following steps: 
a) time sampling, b) time multiplication - frequency convolution, c) fre- 
quency sampling. This is dealt with in detail in Refs. [4 and 7]. 
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Fig. A.3. Frequency spectrum of a) a sinusoidal time signal and 
b) the tone burst produced by truncating the time signal in a) 

Let us here take an example and see the differences and similarities of 
the two formulations. The signal to be analyzed is the cosine, 
x (t) = A · cos (2 π f1 t) with a Fourier Spectrum as shown in Fig. A.3.a). 
    Truncation of the signal by multiplication with Rectangular weighting 
of length T, produces the tone burst shown in Fig. A.3.b). The effect of 
this multiplication is a convolution in the frequency domain of the spec- 
trum in Fig. A.3.a) with the spectrum of the Rectangular window 
W (f) = T sin(π f T) resulting in the spectrum shown in Fig. A.3.b). The 
                            π f T 
convolution is written as 

(A.25) 
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Fig. A.4. Frequency sampling of the continuous spectrum of the time limited sinusoid. 
Number of periods within the time window (record length) is a) integer (12) 
b) half-integer (12 1/2) 

which can be interpreted as a swept filter analysis where W(f0 - f) is the 
filter characteristic. 

The continuous spectrum is calculated i.e. sampled at the discrete fre- 
quencies f = k ∆f = k 1/T. Depending upon the frequency f1 we will get dif- 
ferent results as exemplified in Fig. A.4. In Fig. A.4.a) f1 coincides with 
one of the samples, here f1 = 12 ∆f (corresponding to 12 periods in the 
record length T), and we get only one line with the correct amplitude in the 
FFT spectrum. In Fig. A.4.b) however f1 is in between two samples, here 
f1 = 12 1/2 ∆f (corresponding to 12 1/2 periods in the record length T) and all 
the side lobes will appear in the analysis and the maximum amplitude is 
too low. This is also referred to as leakage. 

Returning to the filter analogy let us consider a bank of filters at 
f0 = k ∆f with filter characteristics W (f - f0)(= W(f0 - f)) to give the 
same results as convolution and sampling. In Fig. A.5 it is shown how the 
output Y(i) is found using the filter model (i is the time index as defined 
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Fig. A.5. a) Spectrum of input time signal x(t) = A cos (2 π f 1t), f1 = 3 1/2 ∆f, 
b) amplitude and phase characteristic of filter/line at f0 = 2 ∆f, with rectangular 

weighting, 
c) Spectrum of output signal for filter/line f0= 2 ∆f, 
d) complex time output signal for filter/line f0 = 2 ∆f (sum of contra-rotating vectors 

with frequency of f1 and -f1 respectively) 
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earlier). The input signal is in this example a cosine with frequency 
f1 = 3 1/2 ∆f and the filter considered is at f0 = 2 ∆f as shown in Fig. A.5 a) 
and b). The complex filter output at f0 = 2 ∆f in the frequency domain and 
in the time domain is shown in Fig. A.5 c) and d) respectively. | Y(i)  will 
vary between 

 Y (i) max =  A  +  A     and     Y(i) min  =  A   -  A    
                    3 π   11 π                                3 π    11π 

 
which means  Y (i) max  =  1,75  (corresponding to 4,9 dB). 
                          Y (i) min 

 

The maxima are found when the two contra-rotating vectors point in the 
same direction and the minima when they point in opposite directions. 

This varying amplitude can be seen on the FFT analyzer when analyzing 
a sinusoid with free run trigger and Rectangular weighting (see Ref. [4] 
Fig. 8 for inst.). 

In the other model this is explained by changing the phase of the input 
signal relative to the window, i.e truncating at different points in time. 
Truncating at a zero crossing of the sinusoid instead of at a maximum will 
give a different tone burst and a corresponding different spectrum than 
shown in Fig. A.3 b). The sidelobes of the sin x/x will add at low frequen- 
cies and subtract at high frequencies instead of subtract at low frequencies 
and add at high frequencies as in Fig. A.3 b). This is discussed in detail in 
Ref. [4]. 

Conclusion 
The filter analogy of the FFT has been discussed and is a practical tool in 
many situations to better understand certain phenomena and is used ex- 
tensively in this article. The limitation in the analogy with respect to real- 
time considerations has been pointed out as well and should be kept in 
mind. 

The other formulation based on time multiplication - frequency convo- 
lution and sampling has proven to be a very convenient and a preferable 
model in several other applications of FFT. 

It should be noted that these models or mathematical formulations are 
developed for understanding the FFT techniques. They are valid within 
their limitations and neither one should be considered superior to the 
other. 
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Appendix B 

Windows and Figures of Merit 
The mathematical formulation of the Weighting Functions used in the 
B & K Analyzers Types 2032 and 2034 is as follows: 

                for   0 <  t < T              =  

w (t) = 0   elsewhere 

except for Transient and Exponential Weighting. 
As can be seen the windows consist of a sum of a DC and four harmonic 

terms. The coefficients of the 4 standard windows implemented in the 
2032 and 2034 are given in Table B.I. 

 a0 a1 a2 a3 a4 
Rectangular 1 - - - - 
Hanning 1 1 - - - 
Kaiser-Bessel 1 1,298 0,244 0,003 - 
Flat Top 1 1,933 1,286 0,388 0,032 
 
Table B.1. Window coefficients 

Maximum Amplitude 
The max. amplitude can be calculated from the sum of the window 
coefficients. 

(B.2) 
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Another relevant quantity for windows, sometimes called the Coherent 
Gain, is 

Coherent Gain = a0/Max w (t)                                                                     (B.3) 

This quantity indicates the reference amplitude gain of the filter char- 
acteristic if the maximum amplitude (Max. w(t)) was unity. 

In 2032/34 all windows are scaled in such a manner that the "area" un- 
der the weighting function is equal to one (a0 = 1). This corresponds to a 
reference gain of unity which ensures no power spectral bias error for a 
sinusoid with a frequency coinciding with one of the centre frequencies/ 
lines of the filters. 

Effective Duration 
The effective duration of the window is calculated from 

By use of (B.2) and Parseval's theorem, for the weighting function con- 
sidered as a periodic function with period T, the effective duration can be 
calculated from the square of the window coefficients by 

The effective duration can be interpreted as a measure of the energy 
(integral of values squared) of the weighting function w (t) normalized 
with the maximum amplitude Max. w (t). 

Effective Noise Bandwidth 
The Effective Noise Bandwidth (ENBW) is defined as 
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(B.6) 



 

Using Parseval's theorem we find the definition in the time domain giv- 
en by 

(B.7) 

Again using Parseval's theorem for the weighting function considered as a 
periodic function with period T as previously we find, since 

 
(B.8) 

that 

 

(B.9) 

The reciprocal of ENBW is sometimes in the literature called the Pro- 
cessing Gain (PG), since an increased noise bandwidth permits additional 
noise to contribute to a spectral estimate, giving a lower signal to noise 
ratio, when detecting sinusoidal signals in noise. 

Overlap Correlation 
If windows are applied to non-overlapping partitions of a time sequence, a 
significant part of the time signal is ignored due to the fact that most win- 
dows exhibit small values near the boundaries. To avoid this loss of data, 
overlap analysis can be performed. 

In 2032/34 standard overlap of 0%, 50%, 75% and maximum can be 
chosen. 

The correlation as a function of fractional overlap, r can be calculated 
using the correlation coefficient. 

(B.10) 
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Correlation 
Coefficient 

25% 
Overlap 

50% 
Overlap 

75% 
Overlap 

100% 
Overlap 

Rectangular 0,25 0,5 0,75 1 
Harming 0,0075 0,1667 0,6592 1 

Kaiser-Bessel 0,0014 0,0735 0,5389 1 
Flat Top 0,0005 -0,0153 0,0455 1 

 
Table B.2. Correlation coefficients for 25%, 50%, 75% and 100% overlap for the various 
window functions 

The correlation coefficients for 25%, 50%, 75% and 100% overlap are 
shown in Table B.2. 

For an estimate based on the average of a number n#d of statistically in- 
dependent records (or degrees of freedom) the BT-product (Bandwidth 
times Averaging Time) per filter is equal to the number of averages inde- 
pendent of the weighting function used 

BT = nd                                                                                                           (B.11) 

Thus the relative standard deviation, ∈ r for autospectra (RMS) of gauss- 
ian random signals is 

∈ r =   1    =   1                                     (B.12) 
2√BT            2√nd 

In an analysis with average of nd records with 50% overlap the BT-prod- 
uct is given by (Refs. [2 and 3]) 

BT50% = [[1+2c
2
(50%)]/nd - 2c

2
(50%)/n

2
d]

-l
                                                  (B.13) 

and for 75% overlap the BT-product is given by (Refs. [2 and 3]). 

BT75% = [[1+2c2(75%) + 2c2 (50%) + 2c2 (25%) }/nd 

- 2 [c2 (75%) + c2 (50%) + 3c2 (25%) ]/n2
d]-1                                                (B.14) 

The negative terms in B.13 and B.14 are edge effects of the average and 
can be ignored if the number of averages, nd is larger than ten. Also note 
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that for most windows the correlation (squared) for 25 % overlap is small 
compared to 1 and can also be omitted from B.14 without significant error. 
   The effective BT-product per filter per record BTeff. shown in Table 3 
(in Part I of this article) is now calculated from 

BTeff (50%) = BT50%/nd                                                                              (B.15) 

and 

BTeff (75%) = BT75% /nd                                                                             (B.16) 

The theoretical values have been verified experimentally (see Appen- 
dix D). 

An example: for a white noise gaussian random signal 123 spectra have 
been averaged using Hanning Weighting with 75% overlap. What is the 
difference in dB between the maximum and minimum values in the auto- 
spectrum estimate? 

From Table 3 we have the effective BT-product to be 123 · 0,52 = 64. 
From (B.12) the relative standard deviation (68% confidence interval) is 
1/16 or 0,5 dB. The 99% confidence interval is given by ± three times the 
standard deviation. Assuming that the maximum and minimum values of 
the spectral estimate will be the extremes of the 99% confidence interval 
we will have a difference between the maximum and minimum values of 
2 · 3 · ∈ r, i.e. here 3 dB. 
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Appendix C 

Effective Weighting of 
Overlapped Spectral Averaging 
The effective weighting of an overlapped spectral average analysis can be 
defined as the variation of the spectral level from an impulse versus the 
impulse's position in time - that is the weight given to the data in the 
spectral average as a function of time. For example, for 50% overlap, lin- 
ear averaging and Hanning window a weighting as shown in Fig. C.I is 
obtained. The Figure of interest here is the ripple on the spectral level, 
which can be defined as 10 log (Max/Min) - in the above example 3 dB. 

The effective weighting is relatively easy to calculate numerically by 
summing a series of squared weighting functions with the specified over- 
lap (see Appendix A eqn. (A.16)). The ripple periodicity must by sym- 
metry be the same as the shift between spectra. 

A case of interest is the effective weighting function obtained in overlap 
analysis with Hanning window applied. The ripple obtained as a function 
of shift between records is shown in Fig. C.2. As can be seen the ripple falls 
very rapidly from 3 dB for a shift of 0,5 to zero between shifts of 0,3 and 
0,4. Additional zeroes are seen for smaller shifts. These actually lie in the 
series 1/3  , 1/4, 1/5, 1/6 etc., i.e. 1/(integer>2). 

Fig.C.1. Ripple in the effective weighting of the time signal when using Hanning Weight- 
ing and 50% overlap 

19 



 

Fig.C.2. Ripple of effective weighting function using Hanning weighted overlapped sig- 
nal averaging 

Among other things this means that the widest analysis bandwidth for 
overlapped averaging to obtain a uniform weighting is found with an over- 
lap of 2/3. While 2/3 is not a practical shift given the normal FFT size the 
nearest value is quite good enough. 

This situation comes about in the following manner. The squared Han- 
ning has a form [1 - cos (2 π t/T)]2 i.e. contains only a constant and the 
terms cos (2 π t/T) and cos (4 π t/T), where T is the window length. The 
shift of the window is equivalent to a phase shift of A for the cos (2 π t/T) 
term and 2 A for the cos (4 π t/T) term. Considering the series of windows 
which affect a given impulse, the ripple is contained in these cos terms and 
the contribution for each term can be considered as the real part of a com- 
plex addition - the example for two windows separated by A is shown in 
Fig. C.3.a. 

It is seen in Fig. C.3.b that when the shift is 0,5 of the window length, i.e. 
the phase shift A = π, the sum of only the terms with phase difference A is 
zero. 
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Fig.C.3. Addition (complex) of the terms with phase difference A and 2A in calculation 
of the ripple of the effective weighting function in situation with overlapping and 
Hanning 

But when a shift of 1/3 is used the sum of both the terms with phase 
difference A and 2 A are zero and likewise for any shift of 1/(integer>2). 

Thus the overlap must be 2/3, 3/4, 4/5, 5/6 etc. (see Fig. C.4) to obtain re- 
sults equivalent to a true real-time analysis with parallel filters (Refs. [1,5 
and 6] and Appendix A). 

75% overlap is the most commonly used overlap, since it is an integer 
number of samples when the transform size is a power of two. 

Using special parameter number 2 in 2032/34 an overlap of 1365 samples 
corresponding to nearly 2/3 record length can be specified, thus giving a 
nearly flat weighting in the widest analysis bandwidth possible. 
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Fig. C.4. Overall weighting functions for overlapping Hanning windows 

22 



 

Appendix D 

Experimental Determination of the BT-Product for 
FFT-Analysis using different weighting functions and 
overlap 
The BT-product is determined from the relative standard deviation, ∈ r of 
the amplitude of auto-spectra estimates when analyzing a gaussian white 
noise random signal. 

For RMS values we have 

∈ r =   1   ⇔ BT =  1                             (D.1) 
 2 · √BT                   4 · ∈ 2

r 

which means that we can determine the BT-product from experimentally 
determined standard deviations of autospectra estimates (measure- 
ments). The effective BT-product per record BTeff is then given by 

BTeff =  BT                                                                                                    (D.2) nd 

where nd is number of linear averages. 
The Measurement Setup is shown in Fig. D.1. 

 

Fig. D.1. The instrumentation for experimental determination of the BT-product for 
FFT analysis 
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BTeff 
per record 

0% 
Overlap 

50% 
Overlap 

75% 
Overlap 

Rectangular 0,954 0,674 0,368 
Hanning 0,995 0,940 0,535 

Kaiser-Bessel 1,009 0,996 0,628 
Flat Top 0,990 1,000 0,994 

 
Table D.1. Effective BT-product per record, when overlap analysis is performed (experi- 
mental values) 

The number of averages (LIN), the overlap and the weighting function 
are chosen in the Measurement Setup of the 2032. 

The readout of absolute (RMS) or relative (dB) values are chosen in the 
Display Setup. 

The frequency interval (number of lines) and the number of estimates 
(measurements) are chosen in the programme. 

Now the mean values and standard deviations from the autospectra at 
each frequency in the chosen frequency interval, as well as the mean value 
of these mean values and standard deviations are calculated in the 
computer. 

A typical result is taken as the mean value of four experiments. In each 
experiment 100 estimates of autospectra, using 100 averages and 40 fre- 
quency lines, have been taken. Most of the results shown in Table D.I 
agree within 1 % of the theoretical values shown in Table 3 in Part I of this 
article. 
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Appendix E 

Examples of User Defined Windows 
The User Defined windows are implemented in the B & K Analyzers 
Types 2032/34 as 

The coefficients Ai (E.I) are now calculated 
Ai = 2(15 - E) · ai                                             (E.3) 
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0 ≤ n ≤ N - 1 

N = 1024 if in Zero Pad Mode 
N = 2048 if not in Zero Pad mode 

Notice the slightly different formulation from the rest of this article 
with a common scaling factor for all the window coefficients. 

In the design of User Defined windows the following criterion must be 
used: 

The exponent E must be an integer as small as possible, however large 
enough to fulfil Equation (E.2). 

(E.2) 



 

Hamming Window 
The Hamming window is defined as 

w(t) = 1 -0,84 cos (2 π t)     for 0 ≤ t < T 

w (t) = 0                               elsewhere                                                         (E.4) 

and has an Effective Noise Bandwidth of 1,3528 ∆f. 
The Hamming window can be implemented in the 2032 or 2034 using 

special parameters #6 to #12. 
First the Noise Bandwidth is entered in special parameters #6 to #9 as 

#6 and #8:       13528. 
#7 and #9:              -4. 

Then the common exponent E in 
#10:                          1. 

And finally the coefficients, here A0 and A1 in 
#11:214                =16384    and 
#12:214 · 0,84      = 13762. 

This window is very similar to the Hanning Window, but has the special 
feature, that it suppresses the first sidelobe. However, the fall-off rate of 
the side-lobes is only 20 dB per decade compared to 60 dB per decade for 
the Hanning window. Fig. E.1 a) shows a "worst case" analysis of a sinusoid 
with Hamming weighting. 

Blackman-Harris Window 
The four term -92 dB Blackman-Harris window has the following 
coefficients: 
a0 = 1, a1 = 1,36..., a2 = 0,39..., a3 = 0,032.... The Effective Noise Bandwidth 
is 2,00.. ∆f. 

The window is implemented in the 2032 or 2034 using the special param- 
eters #6 to #14 as 

#6 and #8:        2. 
#7 and #9:        0. 
#10:                       = 2. 
#11:  213                  = 8192. 
#12:  213 · 1,36      = 11150. 
#13:  213 · 0,39      = 3226. 
#10:  213 · 0,032    =   267. 

26 



 

Fig. E.1. The "worst case", when analysing a sinusoid using a) Hamming window and 
b) Blackman-Harris window 

The Blackman-Harris window has very much the same performance as 
the Kaiser-Bessel window Ref. [2] except that it suppresses the sidelobes 
more than 92 dB at a cost of an 11 % wider Noise Bandwidth. In Fig. E.1 b) 
a "worst case" analysis of a sinusoid with Blackman-Harris weighting is 
shown. 
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Appendix F 

Picket Fence Effect 

Whenever analysis with discrete fixed filters is performed, the spectrum is 
measured at the filter centre frequencies with a resolution given by the 
filter bandwidths. This is not only the case for DFT/FFT analysis, but in 
general when a bank of parallel filters or stepped filters are used for the 
analysis. 

Fig. F.1. Illustration of Picket Fence Effect 
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The effect of only measuring the spectrum at discrete frequencies is re- 
ferred to as the picket fence effect, since it is similar to viewing the contin- 
uous spectrum (measured with the given bandwidth) through a picket 
fence, see Fig. F.1. 

As indicated in Figs. 7, 9, 12 and 16 (shown in Part I of this article) we 
will therefore in general get an error in both amplitude and frequency of 
the highest line in the spectrum of a frequency component. The amplitude 
error is limited by the ripple in the passband while the frequency error is 
limited by the line spacing ∆f. The errors are referred to as picket fence 
effect errors. Only in the situation where the frequency component coin- 
cides with a centre frequency/line in the analysis both the amplitude and 
the frequency will be correct. 

If we know or assume that it is a single and stable frequency component 
the errors can be compensated for by an interpolation technique on the 
well defined filter characteristics of the weighting functions, see Figs. 6, 8, 
11 and 15 (in Part I of this article). The amplitude and frequency correc- 
tions can be calculated from the difference ∆, in dB, between the two high- 
est lines around the peak. We will here limit the discussion to the Hanning 
window and Rectangular window, but similar formulae could be devel- 
oped for other window functions. 

The frequency correction, ∆fc Hz for Hanning Weighting is given by: 

2 - 10 ∆dB/20dB ∆fc = 
1 + 10∆dB/20dB  · ∆f                                                                                 (F.1) 

where ∆f is the line spacing in the analysis. 
The Equation F.1 is shown in graphical form in Fig. F.2 and is tabulated 

in Table F.1. 
For Hanning Weighting, ∆dB has a maximum of 6 dB, when the fre- 

quency coincides exactly with an analysis line, and a minimum of zero dB, 
when it falls exactly between two lines. 

The amplitude correction, ∆L dB for Hanning Weighting is given by 

sin π ∆ fc/∆f                   1 ∆L = 20 log ——————— ·  ————————                      (F.2) 
π ∆ fc/∆f                       1-(∆fc/∆f)2 

which is also shown in graphical forms in Fig. F.2 and is tabulated in 
Table F.1. 
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 Fig. F.2. Amplitude and frequency compensation for picket fence effect with Hanning 
Weighting 

For Hanning Weighting the amplitude correction, ∆L is 0 dB, when the 
frequency coincides exactly with an analysis line, which is indicated by a 
∆dB equal to 6,0 dB. The amplitude correction is 1,42 dB, when ∆dB is 
equal to 0 dB, that is when the frequency of the signal is exactly between 
two lines. 
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∆dB ∆L ∆fc 
0.0 1.42 0.50
0.2 1.33 0.48 
0.4 1.23 0.47 
0.6 1.14 0.45 
0.8 1.05 0.43 
1.0 0.97 0.41 
1.2 0.89 0.40 
1.4 0.81 0.38 
1.6 0.74 0.36 
1.8 0.67 0.35 
2.0 0.61 0.33 
2.2 0.55 0.31 
2.4 0.49 0.29 
2.6 0.43 0.28 
2.8 0.38 0.26 

    

∆dB ∆L ∆fc 
3.0 0.33 0.24
3.2 0.29 0.23 
3.4 0.25 0.21 
3.6 0.21 0. 19 
3.8 0. 18 0. 18 
4.0 0. 14 0. 16 
4.2 0. 12 0. 14 
4.4 0.09 0. 13 
4.6 0.07 0.11 
4.8 0.05 0. 10 
5.0 0.04 0.08 
5.2 0.02 0.06 
5.4 0.01 0.05 
5.6 0.01 0.03 
5.8 0.00 0.02 
6.0 0.00 0.00  T01648GB0 

Table F.1. Amplitude and frequency compensation for Picket Fence Effect with Hanning 
Weighting 

Using this picket fence correction technique it is possible to achieve a 
frequency accuracy approximately 100 times finer than the line spacing. 
For cursor read out on 2032/34 the dB values used for these calculations 
can be found with two decimals rather than one in the Scratch Pad Memo- 
ry octal addresses 1257 (the integer) and 1260 (the 10-exponent) for the 
upper graph, and 1357 (the integer) and 1360 (the 10-exponent) for the 
lower graph, see Fig. F.3. 

For Rectangular Weighting the corresponding correction terms are for 
frequency 

∆fc =            1           · ∆f                                        (F.3) 
1 + 10(∆dB /20 dB)  

and for amplitude 

   sin π ∆fc  /∆f  
∆L = 20 log  —————                                  (F.4) 

      π ∆fc / ∆f 

For system analysis where identification of resonance frequencies and 
dampings are essential similar techniques can be used. For lightly damped 
structures it is assumed that a resonance peak can be modelled by a single 
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Fig. F.3. The use of scratch pad memory for readout of cursor values with higher 
accuracy 

Fig. F.4. Mechanical Single Degree of Freedom (SDOF) model 
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degree of freedom (SDOF) model, see Fig. 4. Such a model, consisting of a 
mass, spring and a damper (Refs. [9 and 10]) has a Frequency Response 
Function as shown in Fig. F.5. 

Using a curvefit technique where the mathematical SDOF model is fit- 
ted to the measured Frequency Response Function using the method of 
least squares error, the resonance frequency, the peak amplitude and the 
damping can be estimated with a degree of accuracy much better than the 
resolution of the FFT analysis allows. The assumption is that the mea- 
surement is free of leakage. 

An example is shown in Fig. F.6 where the resolution, i.e. the line spac- 
ing is 4 Hz. Pseudo-random excitation is here used to avoid leakage in the 
analysis. The curvefit calculates the resonance frequency with a resolution 
at least 100 times higher than the FFT analysis. A zoom measurement 
verifies the results. 

Fig. F.5. Logarithmic amplitude log  H(f)  and phase φ(f) of the Frequency Response 
Function of a Single Degree of Freedom model 
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Fig. F.6. Estimation of resonance frequency and 3 dB bandwidth using a curvefit tech- 
nique. Note that the line spacing in the analysis, ∆f is 4 Hz 
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Footnote (from page 7) 

The linear averaging algorithm used in the analyzers is: 

 Y (i) 2 = 1  Y (i) 2 +  i - 1  Y (i -1) 2 
  i                      i 

for     1 ≤ i ≤ N 

Thus the averaging can be stopped with correctly scaled result after any 
number of averages without having to wait for the predefined number of 
averages, N, to be performed. 
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Acoustic Calibrator 
for Intensity Measurement Systems * 

by Erling Frederiksen 

Abstract 
A description is given of an acoustic calibrator for intensity measurement 
systems which use microphones of the pressure principle. The calibrator 
produces signals corresponding to those detected by intensity probe mi- 
crophones when the probe is placed in a free progressive sound wave with 
either 0° or 90° incidence. 

In the 90°-mode the signals of the calibrator are equal with respect to 
magnitude and phase. This mode can be used for pressure-sensitivity cali- 
bration of intensity systems and for measurement of residual intensity in- 
dex. Calibrators supplying this type of signals have previously been de- 
scribed in the literature. 

However, for a more rigorous calibration it should be verified that the 
system responds correctly also to a phase difference between the sound 
field signals when this differs from zero. Therefore this calibrator has also 
the 0°-incidence mode. In this mode the calibrator signals are equal to the 
signals at two points in space within a free progressive sound wave. The 
phase difference corresponds to a certain distance between the points 
which means that it is proportional to frequency. The signal magnitudes 
and the phase difference have revealed high stability and calibration accu- 
racy of 0,1 dB is possible. The calibrator can also be used for particle ve- 
locity calibration. 

Sommaire 
Tout d'abord la description d'une source sonore étalon pour les systèmes 

de mesure d'intensité acoustique par microphones sensibles à la pression 
 
 

* First published in Internoise 1987 
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est donnée. Cette source produit des signaux correspondant à ceux qui 
sont détectés par les microphones des sondes, lorsque la sonde est exposée 
à une onde sonore progressive libre avec une incidence de 0 ou de 90°. 

Dans le mode 90°, les signaux de la source sont identiques en amplitude 
et phase. Ce mode peut être utilise pour l'étalonnage de sensibilité en pres- 
sion des systèmes d'intensité et pour les mesures d'index d'intensité rési- 
duelle. Des sources délivrant ce type de signal ont déjà été décrites dans la 
littérature. 

Cependant, pour un étalonnage plus rigoureux, il faut vérifier que le sys- 
tème répond correctement lorsqu'il y a une différence de phase entre les 
deux signaux. C'est pour cela que la source dispose d'un mode 0°, où les 
signaux provenant de la source sont identiques aux signaux engendrés en 
deux points de l'espace par une onde sonore progressive libre. La différen- 
ce de phase correspond à une distance donnée entre les points, et elle est 
donc proportionnelle à la fréquence. L'amplitude des signaux et les diffé- 
rences de phase ont révélé qu'une très grande stabilité et qu'une précision 
de 0,1 dB sont possibles. La source peut aussi être utilisée pour les étalon- 
nages de vitesse particulaire. 

Zusammenfassung 
Es wird ein akustischer Kalibrator für Intensitätsmeßsysteme mit 

Druckmikrofonen beschrieben. Das vom Kalibrator erzeugte Signal en- 
tspricht dem von einer Intensitätssonde aufgenommenen, wenn sich dieses 
in einem freien Schallfeld mit 0°- oder 90°- Einfall befindet. 

Beim 90°-Betrieb erzeugt der Kalibrator Signale, die nach Betrag und 
Phase gleich sind. Hiermit läßt sich der Druckübertragungsfaktor des In- 
tensitätsme#systems kalibrieren sowie der Remanenz-Intensitätsindex 
bestimmen. Kalibratoren, die diese Signalart erzeugen, wurden bereits 
früher in der Literatur beschrieben. 

Für eine strengere Überprüfung der Kalibrierung sollte auch das Verhal- 
ten bei Signalen, die eine unterschiedliche Phasenlage besitzen, unter- 
sucht werden. Hierfür besitzt der Kalibrator den 0°-Betrieb. Hier erzeugt 
der Kalibrator Signale, die den Signalen an zwei räumlich verschiedenen 
Stellen einer sich frei fortpflanzenden Schallwelle entsprechen. Die Pha- 
sendifferenz entspricht einem gegebenen Abstand im Raum, d.h. sie ist 
frequenzproportional. Der Betrag und die Phasendifferenz der Signale 
sind hochstabil und eine Kalibriergenauigkeit von 0,1 dB ist möglich. Der 
Kalibrator läßt sich auch zur Teilchenschnelle-Kalibrierung einsetzen. 
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Introduction 
Today measurement of sound intensity has proved its usefulness for noise 
analysis. Instruments are constantly improving, but as they are quite com- 
plex many users have desired means of calibration to gain further confi- 
dence in their measurement results. 

Most systems use pressure microphones and practically all field calibra- 
tions made today are pressure calibrations of the system channels. In fewer 
cases the channels are also tested for equality of their phase responses - 
usually at one frequency only. 

An acoustical calibrator for a far more extended calibration has been 
developed. According to known principles it can be used for pressure level 
calibration at 250 Hz and for phase check by measurement of residual in- 
tensity index between 10 Hz and 5 kHz. 

In addition to these features the calibrator has an extra operation mode 
in which it produces signals for calibration of intensity and particle veloci- 
ty sensitivity of instruments operated in these modes. This new mode is 
the main theme of this paper. 

Operation Principle of Intensity System with Pressure 
Microphones 
Most measurement systems which employ pressure microphones deter- 
mine the instantaneous values of particle velocity, u(t) and of the sound 
intensity, I(t) in accordance with the following expressions: 
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P1(t), p2(t):      instantaneous values of the pressure signals 
∆ro, ρo:            system parameters for microphone distance and air density 

For sinusoidal signals the measured values of the particle velocity, 
u [rms] and of the time average value of sound intensity, Ī become: 

Ī  = P1 P2 sin φ 

    ω ρo ∆ ro 



 

P1, P2:   rms-values of the sinusoidal pressure signals 
φ, ω:     phase angle between the pressure signals and angular frequency 

Operation of the Sound Intensity Calibrator 
The formulae above show that the measurement results are functions of 
four signal parameters. Therefore a calibrator has to produce signals for 
which these parameters are stable as functions of time and perform in a 
predictable way under common environmental conditions. 

A calibrator which statisfies these requirements has been developed. It 
consists of a sound source and of a special coupler with two cavities, (a) 
and (b), see Fig. 1. The cavities have ports (1, 2 and 3) for connection of 
intensity probe microphones. One of the cavities (a) is directly connected 
to the source while the second cavity (b) is coupled to (a) via an acoustical 
coupling element which contains a resistance and a mass in series 
connection. 

At low frequencies the acoustical network formed by the coupling ele- 
ment and by the compliance of cavity (b) creates cavity signals with a 
phase difference which is proportional to frequency and with magnitudes 
which are nearly equal. These properties exactly comply with the pressure 
at two points in a space where a plane sound wave is propagating. Thus for 
a pressure microphone probe the calibrator can simulate a free field wave 
with definable levels of sound pressure, particle velocity and intensity. 

The coupler has been designed to create a phase difference correspond- 
ing to that valid for 50 mm microphone distance with an angle of zero de- 
grees between the probe axis and the wave's propagation direction. The 
coupler properties are independent of the choice of sound source but a well 
defined source is needed for sensitivity calibration, therefore a piston- 

Fig.1. Principle of the intensity calibrator. The microphones are placed in the ports (1) 
and (3) for calibration of intensity sensitivity 
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Fig.2. Model of the calibrator driven by the pistonphone with values valid at 1013 mbar 
and 20° C. The microphones are placed in the ports (1) and (3) for intensity or velocity 
calibration 

phone, B & K Type 4220 was chosen for operations of this mode. See a 
model of the calibrator in Fig. 2. 

The magnitude and phase differences between the pressure of the cavi- 
ties, (b)-(a) have been measured and calculated, see Fig. 3 which also 
shows that within the range from a few Hz to about 500 Hz the phase dif- 
ference between the ports is nearly equal to the free-field phase lag for 
points 50 mm apart. When driven by a pistonphone at 250 Hz the sound 
 

Fig. 3 Magnitude difference (1) and phase difference (2) between the pressure of the 
calibrator cavities, (b)-(a) were measured (curves) and calculated (points). The dotted 
line (3) shows the free-field phase lag for points 50 mm apart at 20° C 
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pressure levels of the cavities are nominally 118 dB therefore the particle 
velocity and intensity levels are also close to this value. 

Due to the phase linearity with frequency the levels are not critical with 
respect to frequency. At 250 Hz the slopes are as small as + 0,7 x 10-3 dB/ 
Hz for intensity and + 1,5 x 10-3 dB/Hz for velocity. 

Environmental Influences 
The pressure and intensity levels as functions of the ambient pressure 
were measured with an FFT-analyzer and together with the particle veloc- 
ity level they were also calculated by use of the model. The results are 
listed in the table below. 

Attention should be paid to the agreement between the measured and 
the calculated results and to the fact that the intensity level is practically 
independent of the ambient pressure. Notice that the pressure level follows 
the ambient pressure (last line of the table) while the particle velocity level 
shows the same changes but in the opposite direction. 

By measurement and calculation the temperature coefficient of the in- 
tensity level has been found to be + 0,024 dB/°C. 

Amb. pressure, pa mbar 700 800 900 994 1000 1013 
LI measured dB -0,12 -0,07 -0,02 0 +0,01 - 
LI calculated dB -0,06 -0,03 -0,01 0 0 0 
Lp cav.(a) measured dB -2,89 -1,80 -0,82 0 +0,05 - 
Lp cav.(a) calculated dB -2,87 -1,79 -0,82 0 +0,05 +0,16 
Lv calculated dB +2,93 +1,82 +0,83 0 -0,05 -0,15 
20 log (Pa/994) dB -3,05 -1,89 -0,86 0 +0,05 +0,16 
 

Notes for Application of the Calibrator 
The calibrator is designed for laboratory as well as field use. The calibrator 
supplies sound pressure to the microphone diaphragms only. The calibra- 
tor works correctly with the newly introduced microphone types which are 
especially designed for intensity measurements and which have extremely 
low vent-sensitivity. 

In the calibration mode for intensity sensitivity only very small errors 
will occur with ordinary measurement microphones while significant er- 
rors might occur in the mode for measurement of residual intensity index, 
especially at low frequencies. 
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Accuracy and Calibration of the Intensity Calibrator 
Determination of the calibrator's intensity and particle velocity levels re- 
quires calibration of sound pressure, frequency and of the phase difference 
between the cavities which is more simple to measure than might be ex- 
pected as microphones with known phase characteristics are not needed. 

Calibration can be made with any two microphones which load the cou- 
pler correctly, i.e. with 250 mm3. During the first phase measurement the 
microphones are inserted arbitrarily in the ports (1) and (3) while they are 
interchanged before the second measurement. The difference between the 
results is twice the phase difference between the cavities. The method 
eliminates a possible phase difference between the channels of the applied 
phase meter. The resulting calibration levels are found by inserting the 
measured values in the formulae given under the discussion of the mea- 
surement principle. 

An accuracy of the intensity calibration level better than 0,15 dB is rath- 
er easy to obtain and seems relevant in practice as artificial stability tests 
have given very promising results for the calibrator. 

Conclusion 
An intensity calibrator with a possible accuracy of 0,1 dB has been devel- 
oped. The calibrator can simulate two angles of sound incidence on the 
intensity probe, 0° or 90°. In the 0°-mode sensitivity of measurement sys- 
tems can be calibrated while in the 90°-mode the residual intensity index 
can be measured. 

It might be necessary to correct the calibrator's intensity level for the 
temperature but the ambient pressure has practically no influence at all. 

The principle is new but the properties of the calibrator have been mea- 
sured under different environmental conditions and a model has been 
worked out. The good agreement between the behaviour of the calibrator 
and the model shows that all significant physical effects are known. 

For assistance with the experiments the author wishes to thank A. 
Halfdaner. 
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○ Product Data Sheets (English, German, French, Russian) 
Furthermore, back copies of the Technical Review can be supplied as shown in 
the list above. Older issues may be obtained provided they are still in stock. 
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